Ponente: Rubén Martínez Avendaño
Institución: Universidad Autónoma del Estado de Hidalgo

22/11/2016
de 12:00 a 13:00
Dónde    Auditorio "Alfonso Nápoles Gándara"

Un operador lineal T en un espacio de Banach se dice hipercíclico si existe un vector x tal que el conjunto {x,Tx,T²x,T³x,…}.es denso en el espacio.

Los primeros ejemplos de operadores hipercíclicos (en otros contextos) se conocen desde mediados del siglo XX. La existencia de operadores hipercíclicos es, quizá, sorprendente, pero es importante en el estudio de dos temas: el caos lineal y el problema del subconjunto invariante. En esta plática, iniciaré con las propiedades básicas de operadores hipercíclicos y mostraré varios ejemplos, culminando con un resultado reciente acerca de la hiperciclicidad de operadores de desplazamiento en espacios L^{p} con dominio un árbol dirigido.

Temas:

Teoría de operadores, Análisis funcional

Jueves, Noviembre 21, 2024